Show simple item record

dc.contributor.advisorDaniel Spielman.en_US
dc.contributor.authorKelner, Jonathan, 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-03-24T18:26:04Z
dc.date.available2006-03-24T18:26:04Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/30169
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.en_US
dc.descriptionIncludes bibliographical references (leaves 37-39).en_US
dc.description.abstractIn this paper, we address two longstanding questions about finding good separators in graphs of bounded genus and degree: 1. It is a classical result of Gilbert, Hutchinson, and Tarjan [12] that one can find asymptotically optimal separators on these graphs if he is given both the graph and an embedding of it onto a low genus surface. Does there exist a simple, efficient algorithm to find these separators given only the graph and not the embedding? 2. In practice, spectral partitioning heuristics work extremely well on these graphs. Is there a theoretical reason why this should be the case? We resolve these two questions by showing that a simple spectral algorithm finds separators of cut ratio O(sqrt(g/n)) and vertex bisectors of size O(sqrt(gn)) in these graphs, both of which are optimal. As our main technical lemma, we prove an O(g/n) bound on the second smallest eigenvalue of the Laplacian of such graphs and show that this is tight, thereby resolving a conjecture of Spielman and Teng. While this lemma is essentially combinatorial in nature, its proof comes from continuous mathematics, drawing on the theory of circle packings and the geometry of compact Riemann surfaces.en_US
dc.description.statementofresponsibilityby Jonathan Kelner.en_US
dc.format.extent39 leavesen_US
dc.format.extent1794456 bytes
dc.format.extent1796720 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSpectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genusen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc60678254en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record