MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon nanotube applications for CMOS back-end processing

Author(s)
Wu, Tan Mau, 1979-
Thumbnail
DownloadFull printable version (5.968Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
L. Rafael Reif.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Carbon nanotubes are a recently discovered material with excellent mechanical, thermal, and electronic properties. In particular, they are potential ballistic transporters and are theorized to have thermal conductivities greater than any other material currently known. In this thesis, we will examine two possible applications of carbon nanotubes in CMOS back-end processing. The first application is as a replacement for copper interconnects. As interconnect line widths shrink, the electrical resistivity of copper will rise dramatically due to surface scattering effects. Carbon nanotube ballistic transporters may be able to overcome this obstacle, as well as being able to withstand current densities much greater than copper. The second application is an enhanced thermal conductivity dielectric for thermal management purposes. Carbon nanotube-oxide composites demonstrate improved thermal characteristics, and integration into CMOS technology may be able to alleviate some of the heat-removal and distribution problems future integrated circuits will face. We will also examine some of the processing techniques that will be necessary for carbon nanotube commercial deployment. Some of the issues we will discuss are nanotube growth, purification, and separation. In addition, we will consider some of the specific issues that need to be addressed for carbon nanotube integration into CMOS back-end technology, such as in situ growth and self-assembly.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2005.
 
Includes bibliographical references (p. 73-75).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30179
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.