MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crack coalescence in rock-like material under cycling loading

Author(s)
Ko, Tae Young, 1973-
Thumbnail
DownloadFull printable version (31.29Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Herbert H. Einstein.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A total of 170 tests (68 tests for monotonic loading, 102 tests for cyclic loading) have been performed to investigate crack initiation, propagation and coalescence. The specimens have two pre-existing flaws which are arranged at different distances and angles. Wing cracks and secondary cracks are observed in both monotonic and cyclic tests. Wing cracks, which are tension cracks, initiate at (or near) the tips of the flaws and propagate parallel to the compressive loading axis. Secondary cracks always appear after wing crack initiation and lead to final failure. Secondary cracks initiate at the tips of the flaws and propagate in the coplanar direction of the flaw or horizontal (quasi-coplanar) direction. Six types of coalescence are observed. For coplanar geometry specimens, coalescence occurs due to the internal shear cracks. For non-coplanar geometry specimens, coalescence occurs through combinations of internal shear cracks, internal wing cracks and tension cracks. Contrary to monotonic tests, cyclic tests produce fatigue cracks. Fatigue cracks usually occur when 1) after coalescence, the specimens behave as if they had only one larger crack 2) specimens have been subjected to a particular number of cycles. In these experiments, two different fatigue crack initiation directions are observed: horizontal and coplanar to the flaw.
Description
Thesis (Civ. E.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2005.
 
Includes bibliographical references (p. 181-184).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30195
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.