MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activity Recognition from Physiological Data using Conditional Random Fields

Author(s)
Chieu, Hai Leong; Lee, Wee Sun; Kaelbling, Leslie P.
Thumbnail
DownloadCS001.pdf (152.0Kb)
Metadata
Show full item record
Abstract
We describe the application of conditional random fields (CRF) to physiological data modeling for the application of activity recognition. We use the data provided by the Physiological Data Modeling Contest (PDMC), a Workshop at ICML 2004. Data used in PDMC are sequential in nature: they consist of physiological sessions, and each session consists of minute-by-minute sensor readings. We show that linear chain CRF can effectively make use of the sequential information in the data, and, with Expectation Maximization, can be trained on partially unlabeled sessions to improve performance. We also formulate a mixture CRF to make use of the identities of the human subjects to further improve performance. We propose that mixture CRF can be used for transfer learning, where models can be trained on data from different domains. During testing, if the domain of the test data is known, it can be used to instantiate the mixture node, and when it is unknown (or when it is a completely new domain), the marginal probabilities of the labels over all training domains can still be used effectively for prediction.
Date issued
2006-01
URI
http://hdl.handle.net/1721.1/30197
Series/Report no.
Computer Science (CS)
Keywords
Machine Learning, Graphical Models, Applications

Collections
  • Computer Science (CS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.