Show simple item record

dc.contributor.authorZhu, Hongwei
dc.contributor.authorMadnick, Stuart E.
dc.date.accessioned2005-12-14T18:57:13Z
dc.date.available2005-12-14T18:57:13Z
dc.date.issued2006-01
dc.identifier.urihttp://hdl.handle.net/1721.1/30208
dc.description.abstractIn this paper, we first identify semantic heterogeneities that, when not resolved, often cause serious data quality problems. We discuss the especially challenging problems of temporal and aggregational ontological heterogeneity, which concerns how complex entities and their relationships are aggregated and reinterpreted over time. Then we illustrate how the COntext INterchange (COIN) technology can be used to capture data semantics and reconcile semantic heterogeneities in a scalable manner, thereby improving data quality.en
dc.description.sponsorshipSingapore-MIT Alliance (SMA)en
dc.format.extent399345 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.relation.ispartofseriesComputer Science (CS)en
dc.subjectData Semanticsen
dc.subjectSemantic Heterogeneityen
dc.subjectAggregationen
dc.subjectTemporalen
dc.subjectOntologyen
dc.subjectContexten
dc.titleAddressing the Challenges of Aggregational and Temporal Ontological Heterogeneityen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record