dc.contributor.author | Su, Sara L. | |
dc.contributor.author | Durand, Frédo | |
dc.contributor.author | Agrawala, Maneesh | |
dc.date.accessioned | 2005-12-14T19:02:18Z | |
dc.date.available | 2005-12-14T19:02:18Z | |
dc.date.issued | 2006-01 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/30220 | |
dc.description.abstract | We present a post-processing technique that selectively reduces the salience of distracting regions in an image. Computational models of attention predict that texture variation influences bottom-up attention mechanisms. Our method reduces the spatial variation of texture using power maps, high-order features describing local frequency content in an image. Modification of power maps results in effective regional de-emphasis. We validate our results quantitatively via a human subject search experiment and qualitatively with eye tracking data. | en |
dc.description.sponsorship | Singapore-MIT Alliance (SMA) | en |
dc.format.extent | 9465431 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.relation.ispartofseries | Computer Science (CS) | en |
dc.subject | Image processing | en |
dc.subject | computational photography | en |
dc.subject | saliency | en |
dc.subject | visual attention | en |
dc.subject | power map | en |
dc.title | De-Emphasis of Distracting Image Regions Using Texture Power Maps | en |
dc.type | Article | en |