MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards in-situ device fabrication : electrostatic lithography and nanowire field effect devices

Author(s)
Agnihotri, Vikrant, 1981-
Thumbnail
DownloadFull printable version (3.670Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Joseph Jacobson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Electron beams were used to deposit fine line-width charge in electret materials. The electrets were exposed to charged or polarizable nanoparticle precursors. These nanoparticles decorate the charge pattern. Electret materials including Mylar, Polyamide and Teflon were used for this process. Nanoparticles used ranged from carbon black, gold, silver, iron oxide, aluminum oxide and silicon oxide. Multiple nanoparticle delivery methods were employed including immersion in a nanoparticle solution, exposure to a nanoparticle aerosol, electrosprayed nanoparticles and in-situ delivery of nanoparticles. The technique was adapted to produce the fastest known electron beam resist with exposure dosage as low as 10 nC/cm2. We have termed the new resist an electrostatic resist and the technique electrostatic lithography. A novel technique to fabricate logic elements from semiconducting nanowires grown using vapor-liquid-solid mechanism was also developed. The technique involves source, drain, gate-oxide and gate material fabrication using electron beam induced chemical vapor deposition. Field effect transistor and ring oscillator architectures were fabricated using this process. Nanowires were characterized using scanning electron microscopy and transmission electron microscopy. Current-voltage measurements were performed on the nanowire field effect transistors.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2005.
 
Includes bibliographical references (leaves 79-80).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30264
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.