MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental study of thermal conductivity reduction of silicon-germanium nanocomposite for thermoelastic application

Author(s)
Lee, Hohyun, 1978-
Thumbnail
DownloadFull printable version (6.367Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Gang Chen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To improve the thermoelectric energy conversion efficiency of silicon germanium (SiGe), two methods were used to decrease the thermal conductivity by increasing phonon boundary scattering at interfaces. In the first method, SiGe alloys were annealed at a temperature higher than the melting point to increase the number of grain boundaries. In the second method, SiGe composites were made with nanosize silicon particles. For annealed SiGe alloys thermal conductivity decreased by a factor of two while power factor remained the same value. For SiGe nanocomposite thermal conductivity decreased by a factor of four to that of bulk alloy, but electrical conductivity deteriorated. Future work will focus on increasing electrical conductivity while reducing the thermal conductivity.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
 
Includes bibliographical references (p. 67-70).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30311
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.