MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonparametric statistical methods for image segmentation and shape analysis

Author(s)
Kim, Junmo, 1976-
Thumbnail
DownloadFull printable version (2.205Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan S. Willsky.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Image segmentation, the process of decomposing an image into meaningful regions, is a fundamental problem in image processing and computer vision. Recently, image segmentation techniques based on active contour models with level set implementation have received considerable attention. The objective of this thesis is in the development of advanced active contour-based image segmentation methods that incorporate complex statistical information into the segmentation process, either about the image intensities or about the shapes of the objects to be segmented. To this end, we use nonparametric statistical methods for modeling both the intensity distributions and the shape distributions. Previous work on active contour-based segmentation considered the class of images in which each region can be distinguished from others by second order statistical features such as the mean or variance of image intensities of that region. This thesis addresses the problem of segmenting a more general class of images in which each region has a distinct arbitrary intensity distribution. To this end, we develop a nonparametric information-theoretic method for image segmentation. In particular, we cast the segmentation problem as the maximization of the mutual information between the region labels and the image pixel intensities. The resulting curve evolution equation is given in terms of nonparametric density estimates of intensity distributions, and the segmentation method can deal with a variety of intensity distributions in an unsupervised fashion. The second component of this thesis addresses the problem of estimating shape densities from training shapes and incorporating such shape prior densities into the image segmentation process.
 
(cont.) To this end, we propose nonparametric density estimation methods in the space of curves and the space of signed distance functions. We then derive a corresponding curve evolution equation for shape-based image segmentation. Finally, we consider the case in which the shape density is estimated from training shapes that form multiple clusters. This case leads to the construction of complex, potentially multi-modal prior densities for shapes. As compared to existing methods, our shape priors can: (a) model more complex shape distributions; (b) deal with shape variability in a more principled way; and (c) represent more complex shapes.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Page 131 blank.
 
Includes bibliographical references (p. 125-130).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30352
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.