MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active control of an automobile suspension system for reduction of vibration and noise

Author(s)
Clements, Kristen Lynn
Thumbnail
DownloadFull printable version (2.922Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Steven R. Hall.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A new method for controlling road noise transmitted through the suspension system of an automobile was developed, using a Lincoln LS automobile as the target vehicle. In this vehicle, road surface roughness generates vibrations that are transmitted into the automobile primary through a single bushing (the "point 4 bushing") on each of the front suspension control arms. An electromagnetic actuator was designed, built, and tested on a Lincoln LS with simulated roads noise. The actuator applies a force across the point 4 bushing, in response to accelerations of the vehicle frame, just inboard of the bushing, with the goal of reducing the net forces transmitted into the vehicle frame, which ultimately produce unwanted interior noise. Several tonal controllers were developed, each designed to operate in a narrow frequency band, and to eliminate the cross member (frame) vibration just inside the point 4 bushing. The tonal controllers were able to eliminate cross member vibration at the desired frequency. Eliminating the cross member vibration resulted in modest reductions interior sound levels. A successful vibration control system (in this vehicle) would need to eliminate cross member vibrations over frequency range 100 to 200 Hz. However, a broadband controller with this electromagnetic actuator system proved to be difficult, due to undesirable non-minimum phase dynamics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 79-82).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/30359
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.