MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Precorrected-FFT Method for Coupled Electrostatic-Stokes Flow Problem

Author(s)
Nguyen, Ngoc Son; Lim, Kian-Meng; White, Jacob K.
Thumbnail
DownloadHPCES002.pdf (161.0Kb)
Metadata
Show full item record
Abstract
We present the application of the boundary integral equation method for solving the motion of biological cell or particle under Stokes flow in the presence of electrostatic field. The huge dense matrix-vector product from the boundary integral method poses a computationally challenging problem for solving the large system of equations generated. In our work, we used the precorrected-FFT (pFFT) method to reduce the computational time and memory usage drastically, so that large scale simulations can be performed quickly on a personal computer. Results on the force field acting on the particle, as well as the behavior of the particle through cell trap are presented.
Date issued
2006-01
URI
http://hdl.handle.net/1721.1/30373
Series/Report no.
High Performance Computation for Engineered Systems (HPCES)
Keywords
Boundary Element Method, Fast Fourier Transform, precorrected FFT, Electrostatic, Stokes flow

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.