MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A power assessment of machining tools

Author(s)
Kordonowy, David N. (David Nathaniel), 1981-
Thumbnail
DownloadFull printable version (3.404Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Timothy G. Gutowski.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Energy conservation is becoming a more important ideal in today's society, due to the increasing awareness of environmental and economic impacts. This project experimentally measures the power consumption, which is related to the energy consumption, of machines in the Laboratory for Manufacturing and Productivity, in order to determine the energy cost of the machines. This project then compares the results found experimentally to the theoretical minimum energy consumption in order to reference the measurements to the ideal energy consumption. Finally, this project attempts to find documentation of these energy costs in order to project the results found experimentally onto machines not physically available for measurement. This project found that the machines in the Laboratory for Manufacturing and Productivity used more energy than was necessary while running, due to the sometimes large amount of power needed to run the idle machines. The specifications given by the machine's manufacturers were adequate to estimate the maximum power requirements. Combining these estimates with the motor properties allowed one to estimate the power requirements of both unloaded operation (while the machine was idle) as well as loaded operation.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.
 
Includes bibliographical references (p. 75-76).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/31108
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.