MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The germline- and tissue-specific effects of endogenous point-mutant p53

Author(s)
Olive, Kenneth P
Thumbnail
DownloadFull printable version (32.22Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Tyler Jacks.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/31186 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
p53 is frequently altered in human tumors through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of- function properties to p53. To ascertain the physiological effects of tumor-associated point- mutations in p53, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are mouse models of Li-Fraumeni Syndrome (LFS). They developed allele- specific tumor spectra that were distinct from p53+/- mice and that better reflect the broad spectrum of tumors found in LFS patients. Dominant effects that varied by allele and function were observed in primary cells derived from these mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including hemangiosarcomas and variety of carcinomas. These data support a gain-of-function effect by mutant p53 toward the development of epithelial and endothelial tumors. Furthermore, conditional mutant p53 alleles were used in combination with a conditional activated K-ras allele to generate mouse models of advanced lung adenocarcinoma. In this system, the effects of endogenous mutant p53 were found to be both allele-specific and tissue- specific. This work provides insight into the spectrum of p53 mutations in human cancers and demonstrates that point-mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss ofp53 function.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2005.
 
Vita.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://dspace.mit.edu/handle/1721.1/31186
http://hdl.handle.net/1721.1/31186
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.