Show simple item record

dc.contributor.advisorMerton C. Flemings.en_US
dc.contributor.authorWannasin, Jessada, 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2006-03-29T18:29:11Z
dc.date.available2006-03-29T18:29:11Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32267
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.en_US
dc.descriptionIncludes bibliographical references (p. 118-125).en_US
dc.description.abstractA high-pressure liquid infiltration process utilizing centrifugal force was designed and laboratory equipment developed. In this process, a mold containing reinforcing materials was located at the end of an elongated runner, which was filled with a molten metal. Rotation of the runner created centrifugal force driving infiltration. To obtain high pressures, the metal head was controlled to be long and constant throughout the process. Threshold pressures required for infiltration of several packed ceramic powders were determined using the laboratory equipment built. Achievable pressures were up to 150 atm for Sn-15 wt% Pb. The pressures allowed SiC, TiC, and A1203 powders ranging in sizes from 25 [mu]m to 300 [mu]m, packed to a high volume fraction, to be infiltrated by Sn-15 wt% Pb. Threshold pressure results obtained agree well with experimental results previously reported, and with calculated values. Observations of the resulting composite structures showed layering and porosity defects. Layering defects, but no porosity defects, were observed in the composite samples containing coarse powders. In contrast, the composites containing fine powders possess porosity defects, but not layering defects. The layering defect was attributed to the depacking mechanism of the powders during the cold pressing process. The porosity defect was attributed to insufficient applied pressures. A new packing process was proposed to avoid layering in coarse powders. Macrosegregation and microsegregation were limited in all samples. The interparticle spacings of these composites were smaller than the dendrite arm spacing would have been at equivalent cooling rates; thus, dendrite formation and microsegregation were effectively suppressed.en_US
dc.description.abstract(cont.) Commercial viability of the process was assessed. Results show that the centrifugal infiltration process has several attributes, including a higher production rate and larger part size when compared with gas pressure infiltration and a wider variety of part geometry, part sizes, and materials systems capable of being produced when compared with squeeze casting. A feasibility study shows that an industrial-scale centrifuge would be able to fabricate aluminum metal matrix composites (MMCs) containing both coarse and fine reinforcements at a high volume fraction. The process should also be scalable to higher melting point MMCs.en_US
dc.description.statementofresponsibilityby Jessada Wannasin.en_US
dc.format.extent125 p.en_US
dc.format.extent5599402 bytes
dc.format.extent5597118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMaterials Science and Engineering.en_US
dc.titleCentrifugal infiltration of particulate metal matrix composites : process development and fundamental studies/en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc56029460en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record