MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolution and statistics of biological regulatory networks

Author(s)
Chandalia, Juhi Kiran, 1979-
Thumbnail
DownloadFull printable version (2.458Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Leonid Mirny.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I study the process of evolution of the gene regulatory network in Escherichia coli. First, I characterize the portion of the network that has been documented, and then I simulate growth of the network. In this study, I assume that the network evolves by gene duplication and divergence. Initially, the duplicated gene will retain its old interactions. As the gene accumulates mutations, it gains new interactions and may or may not lose the old interactions. I investigate evidence for the duplication-divergence model by looking at the homology and regulatory networks in E. coli and propose a simple duplication-divergence model for growth. The results show that this simple model cannot fully account for the complexity in the real network fragment as measured by conventional metrics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2005.
 
Includes bibliographical references (p. 57-58).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32313
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.