Show simple item record

dc.contributor.advisorK. Dane Wittrup.en_US
dc.contributor.authorYeung, Yik Andyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2006-03-29T18:34:21Z
dc.date.available2006-03-29T18:34:21Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32325
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2005.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references (leaves 131-141).en_US
dc.description.abstractAntibodies targeting various tumor-associated antigens have been developed successfully to treat cancer. In this Thesis, novel antibodies and antibody-conjugate against two tumor antigens, AF-20 antigen and human aspartyl (asparaginyl) [beta]- hydroxylase (HAAH), were developed. Previously, these two tumor antigens have been shown to be present on a variety of tumor cells, while they have minimal expression on normal tissues, rendering them excellent targets for antibody therapy. For the AF-20 work, the variable region (V) gene of a previously isolated mouse monoclonal antibody (mAb) AF-20 was cloned from hybridoma mRNA and used to construct an AF-20 single-chain Fv (scFv). The AF-20 scFv was shown to bind specifically to the same epitope as mAb AF-20 with a binding affinity of 4nM. The AF- 20 scFv was also internalized into tumor cells in a manner identical to that of the original mAb AF-20. The scFv was later employed for cellular internalization of virus-sized fluorescent quantum dots. In addition, to demonstrate the versatility of this antibody, an immunotoxin composed of AF-20 scFv fused to the highly cytotoxic recombinant toxin gelonin was constructed, and its in-vitro efficacy against three different tumor cell lines were evaluated. The IC50 of the AF-20 scFv-gelonin fusion was consistently one to two logs lower than the IC50 of free gelonin on FOCUS (liver), L3.6pl (pancreas) and PC3 (prostate) cells, further demonstrating the capability of the AF-20 scFv as a targeting module. Therefore, this AF-20 scFv is a potential internalization vector for toxins, enzymes, radionuclides and virus for targeted therapy of AF-20-antigen expressing tumor cells.en_US
dc.description.abstractFor the HAAH study, twelve novel human scFv against HAAH were isolated from a human non-immune scFv library displayed on the surface of yeast. Five of the twelve scFv were reformatted as human IgG 1. One of the reformatted IgG, 6-22, showed significant binding to recombinant HAAH protein in ELISA, tumor cell lines, and tumor tissues. 6-22 IgG was also shown to target the catalytic domain of HAAH, and its apparent dissociation constant was determined to be 1.OnM. 6-22 IgG alone does not exhibit significant cytotoxicity toward the tumor cells. However, 6-22 IgG internalizes into tumor cells and can therefore be employed to deliver cytotoxic moieties into tumor cells. A goat anti-human IgG-saporin conjugate was delivered into tumor cells by 6-22 IgG and hence elicited cytotoxicity toward the tumor cells in vitro. Meanwhile, the monovalent affinity of 6-22 scFv was too low for therapeutic or diagnostic application, so 6-22 scFv was affinity matured using directed evolution and yeast surface display. After two rounds of mutagenesis, a mutant, C4-18, with an affinity of 0.6nM was isolated. Overall, these human [gamma]-HAAH scFv and IgG can potentially be used in the diagnosis and therapeutic treatment of HAAH-expressing tumor cells.en_US
dc.description.statementofresponsibilityby Yik Andy Yeung.en_US
dc.format.extent144 leavesen_US
dc.format.extent8124202 bytes
dc.format.extent8131970 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemical Engineering.en_US
dc.titleAntibody engineering for cancer therapyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc61368509en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record