Show simple item record

dc.contributor.advisorGregory J. McRae and William H. Green, Jr.en_US
dc.contributor.authorAnantharaman, Bharthwajen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2006-03-29T18:34:37Z
dc.date.available2006-03-29T18:34:37Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32328
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2005.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractWith the rapid advances in kinetic modeling, building elementary surface mechanisms have become vital to understand the complex chemistry for catalytic partial oxidation systems. Given that there is selected experimental knowledge on surface species and a large number of unknown thermochemical, rate parameters, the challenge is to integrate the knowledge to identify all the important species and accurately estimate the parameters to build a detailed surface mechanism. This thesis presents computational methodology for quickly calculating thermodynamically consistent temperature/coverage-dependent heats of formation, heat capacities and entropies, correction approach for improving accuracy in heats of formation predicted by composite G3- based quantum chemistry methods, and detailed surface mechanism for explaining selectivity in ethylene epoxidation. Basis of the computational methodology is the Unity Bond Index- Quadratic Exponential Potential (UBI-QEP) approach, which applies quadratic exponential potential to model interaction energies between atoms and additive pairwise energies to compute total energy of an adsorbed molecule. By minimizing the total energy subject to bond order constraint, formulas for chemisorption enthalpies have been derived for surface species bound to on-top, hollow and bridge coordination sites with symmetric, asymmetric and chelating coordination structures on transition metal catalysts. The UBI-QEP theory for diatomics has been extended for polyatomic adsorbates with empirical modifications to the theory.en_US
dc.description.abstract(cont.) Formulas for activation energies have been derived for generic reaction types, including simple adsorption, dissociation-recombination, and disproportionation reactions. Basis of the correction approach is the Bond Additivity Correction (BAC) procedures, which apply atomic, molecular and bond- wise modifications to enthalpies of molecules predicted by G3B3 and G3MP2B3 composite quantum chemistry methods available in Gaussian® suite of programs. The new procedures have improved the accuracy of thermochemical properties for open and closed shell molecules containing various chemical moieties, multireference configurations, isomers and degrees of saturation involving elements from first 3 rows of the periodic table. The detailed mechanism explains the selectivity to ethylene oxide based on the parallel branching reactions of surface oxametallacycle to epoxide and acetaldehyde. Using Decomposition Tree Approach, surface reactions and species have been generated to develop a comprehensive mechanism for epoxidation. As a result of these developments in the thesis, chemisorption enthalpies can now be estimated within 3 kcal/mol of experimental values for transition metal catalysts and enthalpies predicted by G3B3 and G3MP2B3 Gaussian methods can be corrected within 0.5 kcal/mol. Examples of heterogeneous reaction systems involving silver-catalyzed ethylene epoxidation demonstrate the effectiveness of the methodologies developed in this work.en_US
dc.description.statementofresponsibilityby Bharthwaj Anantharaman.en_US
dc.format.extent395 p.en_US
dc.format.extent18307999 bytes
dc.format.extent18337207 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemical Engineering.en_US
dc.titleReaction mechanisms for catalytic partial oxidation systems : application to ethylene epoxidationen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc61369133en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record