MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards verifiable adaptive control for safety critical applications

Author(s)
Schwager, Mac
Thumbnail
DownloadFull printable version (3.946Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Anuradha M. Annaswamy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To be implementable in safety critical applications, adaptive controllers must be shown to behave strictly according to predetermined specifications. This thesis presents two tools for verifying specifications relevant to practical direct-adaptive control systems. The first tool is derived from an asymptotic analysis of the error dynamics of a direct adaptive controller and uncertain linear plant. The analysis yields a so called Reduced Linear Asymptotic System, which can be used for designing adaptive systems to meet transient specifications. The tool is demonstrated in two design examples from flight mechanics, and verified in numerical simulation. The second tool developed is an algorithm for direct-adaptive control of plants with magnitude saturation constraints on multiple inputs. The algorithm is a non-trivial extension of an existing technique for single input systems with saturation. Boundeness of all signals is proved for initial conditions in a compact region. In addition, the notion of a class of multi-dimensional saturation functions is introduced. The saturation compensation technique is demonstrated in numerical simulation. Finally, these tools are applied to design a direct-adaptive controller for a realistic multi-input aircraft model to accomplish control reconfiguration in the case of unforeseen failure, damage, or disturbances. A novel control design for incorporating control allocation and reconfiguration is introduced. The adaptive system is shown in numerical simulation to have favorable transient qualities and to give a stable response with input saturation constraints.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
 
Includes bibliographical references (p. 97-101).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32344
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.