Show simple item record

dc.contributor.advisorIoannis V. Yannas.en_US
dc.contributor.authorCorin, Karolina A. (Karolina Ann), 1981-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2006-03-29T18:39:19Z
dc.date.available2006-03-29T18:39:19Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32381
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 46-49).en_US
dc.description.abstractAlthough current medical procedures cannot restore complete function of a transected nerve, inserting both of its ends in a tube helps it regenerate. The regenerate is inferior to the uninjured nerve: it has a smaller diameter and poorer electrical conduction. Layers of contractile cells known as myofibroblasts have been observed around regenerated nerve portions. An inverse relationship between the layer thickness and the quality of the regenerate has also been observed. These findings suggest that the cells are exerting contractile forces which prevent the regenerating nerve from fully developing. Inhibiting this contraction should thus improve the quality of nerve regeneration. Alpha smooth muscle actin ([alpha]-SMA) is a critical contractile protein. Its expression can be upregulated by the growth factor TGF-[beta]1, and blocked by the pharmacological agent PP2. To investigate whether blocking SMA expression alone can inhibit myofibroblast contraction, NR6 wild type fibroblasts were seeded into short cylindrical collagen-GAG matrices, and administered either media alone, media with TGF-[beta]1 (3ng/ml), or media with TGF-[beta]1 and PP2 (10 [mu]M). Non-seeded matrix samples were also prepared. The matrix diameters were measured every day for 12 days, after which the matrices were digested and the number of adhered cells were counted. The daily change in matrix diameter was calculated. The results showed that the cells contracted the matrices. TGF-[beta]1 increased cell contractility, while PP2 inhibited it..en_US
dc.description.abstract(cont.) Normalizing the Day 12 diameter change measurements to cell number and the original matrix diameter showed that TGF-[beta] increased the strain generated by each cell ... relative to ... for untreated cells), and that PP2 counteracted this effect (...). Using the linear elastic constitutive relations, the average force exerted per cell was calculated for the untreated cells (...), TGF-[beta]1 stimulated cells (...), and TGF-[beta] + PP2 stimulated cells (...). The cell counts after Day 12 indicate that PP2 interferes with cell adhesion to the matrices. After 6 hours in culture, 21% of untreated cells, 25% percent of cells treated with TGF-[beta] 1, and 25% of cells treated with TGF-[beta]1 and PP2 had adhered. By Day 12, only 12% of the seeded untreated cells, 14% of cells treated with TGF-[beta] I, and 3.2% of cells treated with both TGF-[beta]1 and PP2 remained adhered. This study thus indicates that PP2 inhibits cellular contraction, possibly by preventing cell-substrate adhesionen_US
dc.description.statementofresponsibilityby Karolina A. Corin.en_US
dc.format.extent49 p.en_US
dc.format.extent3162668 bytes
dc.format.extent3163218 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMechanical Engineering.en_US
dc.titleInhibition of myofibroblast contractionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc61523143en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record