dc.contributor.advisor | Edward M. Greitzer, Douglas C. Rabe and Choon S. Tan. | en_US |
dc.contributor.author | Nolan, Sean Patrick Rock | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2006-03-29T18:44:20Z | |
dc.date.available | 2006-03-29T18:44:20Z | |
dc.date.copyright | 2005 | en_US |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/32435 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005. | en_US |
dc.description | Includes bibliographical references (p. 66-67). | en_US |
dc.description.abstract | The relation between tip clearance flow structure and axial compressor stall is interrogated via numerical simulations, to determine how casing treatment can result in improved flow range. Both geometry changes and flow field body forces are used as diagnostics to assess the hypothesis that the radial transport of momentum out of the tip region, and the consequent decrease in streamwise momentum in this region, is a key aspect of the flow. The radial velocity responsible for this transport is a result of the flow field set up by the tip clearance vortex. Altering the position of the tip clearance vortex can alter the amount of streamwise momentum lost due to radial transport and hence increase the compressor flow range. Circumferential grooves improve the flow range in the manner described above. In the presence of such a groove the radial velocity profile along the passage can be altered so that that the radial transport of streamwise momentum is decreased. The flow fields associated with grooves at different axial positions, and of different depths, are also examined, along with previous research on circumferential grooves, and it is shown that these are in accord with the hypothesis. | en_US |
dc.description.statementofresponsibility | by Sean Nolan | en_US |
dc.format.extent | 75 p. | en_US |
dc.format.extent | 2757636 bytes | |
dc.format.extent | 2760512 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | Effect of radial transport on compressor tip clearance flow structures and enhancement of stable flow range | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.identifier.oclc | 61718693 | en_US |