Show simple item record

dc.contributor.advisorRaymond J. Sedwick.en_US
dc.contributor.authorNeave, Matthew D. (Matthew David)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2006-03-29T18:44:25Z
dc.date.available2006-03-29T18:44:25Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32436
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 141).en_US
dc.description.abstractFormation flight of multiple spacecraft is an emerging method for completing complex space missions in an efficient manner. A limitation found in maintaining such formations is the need for precise control at all times. Using traditional thruster propulsion systems can be costly and life-limiting since the propellant is consumed during the mission. An alternative method for providing this relative position control is to use electromagnetic interaction between the vehicles of the formation to provide forces and torques. This method uses electricity alone, which is a renewable resource in space, to provide all actuation to control the formation. The Space Systems Laboratory at MIT is developing this concept with a project called Electromagnetic Formation Flight (EMFF). A two-dimensional testbed has been developed to demonstrate the ability to control vehicle position and attitude using only electromagnetic forces and reaction wheels. A thorough description of this system is given, focusing on the development of its thermal and dynamic control. Innovations to the thermal system, used to cool the superconducting wire of the electromagnet, are described. All systems involved with dynamic control of an EMFF vehicle are identified and the methods used to develop control algorithms are explained. Simulations demonstrating the stability achieved by these controllers are presented and successful experimental results from the testbed are examined. Finally, the test results are used to refine the parameters used in the simulation and a more accurate dynamic model of the system is determined.en_US
dc.description.statementofresponsibilityby Matthew D. Neave.en_US
dc.format.extent141 p.en_US
dc.format.extent6496892 bytes
dc.format.extent6504275 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleDynamic and thermal control of an electromagnetic formation flight testbeden_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc61718742en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record