MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of particulate matter creation and evolution in aircraft engines, plumes and particle sampling systems

Author(s)
Dakhel, Pierre Max
Thumbnail
DownloadFull printable version (8.718Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Ian Waitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Environmental and health concerns have recently led to growing efforts to characterize the exhaust gas composition of aircraft engines. Besides major chemical species (N₂, 0₂, C0₂ and H₂0), aircraft engines also emit other species in much lower concentrations but that may also have significant impacts. Particulate Matter (PM) belongs to this category. This thesis presents a model of the microphysical processes leading to the creation of PM and its subsequent interactions with gas phase chemical species in thermodynamic environments typical of aircraft engines and exhaust plumes at ground level. The effects of the turbine and nozzle of an engine on non-volatile PM emissions are addressed first. Results suggest that limited opportunities exist for the modification of the microphysical properties of the non-volatile PM in these environments, leading to the conclusion that the characteristics of the turbine and nozzle of an aircraft engine have little or no influence on aircraft non-volatile emissions. The analysis is then extended downstream to the case of a plume at ground level. Direct comparisons are made to volatile PM measurements obtained from a recent test (APEX). Time-scale arguments are used to suggest that gas to particle conversion at ground level temperatures is a process too slow for volatile particles to exist before the plume reaches the sampling system and thus little if no modification of the PM characteristics should be measured. However, the residence times and temperatures within the sampling system used in APEX are such that significant modification of the PM characteristics within the sampling system is expected.
 
(cont.) Recommendations to improve the measuring techniques at ground level include lowering the residence time of gas samples inside the sampling system to avoid too large a modification of the flow microphysical characteristics before it reaches the measuring instruments, and careful monitoring of the temperature of the sample throughout the probe and sampling line.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.
 
Includes bibliographical references (p. 105-110).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32452
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.