MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tissue oxymetry using magnetic resonance spectroscopy

Author(s)
Liu, Lisa Chiawen
Thumbnail
DownloadFull printable version (2.733Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Bruce Jenkins, A. Gregory Sorensen and Moungi G. Bawendi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A noninvasive method for in vivo measurement of tissue oxygen concentration has been developed. Several techniques currently used suffer limitations that prevent their practical clinical use. Our method is to use the paramagnetism of molecular oxygen to build a method for noninvasive tissue oxymetry. By using paramagnetism of molecular oxygen, magnetic resonance spectroscopy (MRS) can be used to measure tissue oxygenation. Chemical shifts of brain metabolites and water have a downfield shift with increased amounts of oxygen. Chemical shifts were linearly dependent on the fraction of inspired oxygen (FI02) and the slope is approximately 0.0003 ppm per percent change of oxygen. The slope was not significantly different between brain metabolites or water. Furthermore, the slope agreed with simple theoretical predictions using Henry's law and the magnetic susceptibility of molecular oxygen. Changes in brain oxygenation in the same animals was confirmed using gradient echo BOLD measurements of changes in R2* as a function of F10₂ in the same animals. The results demonstrated the promising potential of this technique. The implementation of this method in stroke and tumor models is discussed. Thesis Supervisor: Bruce Jenkins
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.
 
Vita.
 
Includes bibliographical references (p. 75-78).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32488
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.