MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanistic studies on palladium-catalyzed carbon-nitrogen bond forming reactions

Author(s)
Klingensmith, Liane M. (Liane May)
Thumbnail
DownloadFull printable version (2.428Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Stephen L. Buchwald.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Precatalyst species present in a solution of Pd₂(dba)₃ and Xantphos were identified as Pd(Xantphos)(dba) and Pd(Xantphos)₂ by use of ³¹p NMR and independent syntheses. Pd(Xantphos)₂ was found to form at high ligand concentrations. To determine whether the formation of this species affected reaction rates, reaction calorimetry was used to explore the rate of the palladium-catalyzed coupling of 4-t-butylbromobenzene and morpholine using the ligand Xantphos at varying palladium to ligand ratios. It was found that catalyst activity is dramatically dependent on the concentration of ligand relative to palladium, due to formation of Pd(Xantphos)₂. Two plausible hypotheses for the low activity of Pd(Xantphos)₂ as a precatalyst are (1) a slow rate of dissociation of a ligand from the bis-ligated species, and (2) the high degree of insolubility of Pd(Xantphos)₂. Magnetization transfer experiments were used to probe the rate of dissociation of ligand for the bis-ligated species, and reaction calorimetry experiments were performed using the more soluble t-butylXantphos in comparison to Xantphos to determine whether the insolubility of' Pd(Xantphos)₂ causes it to have relatively low activity. It was found that solubility is not the main cause for the low activity of Pd(Xantphos)₂, and evidence was given to support the hypothesis that low activity results from the slow dissociation of a ligand from the bis-ligated species.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.
 
Vita.
 
Includes bibliographical references (leaves 68-69).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32489
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.