MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human machine collaborative decision making in a complex optimization system

Author(s)
Malasky, Jeremy S
Thumbnail
DownloadFull printable version (8.693Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Milton B. Adams and Cynthia Barnhart.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Numerous complex real-world applications are either theoretically intractable or unable to be solved in a practical amount of time. Researchers and practitioners are forced to implement heuristics in solving such problems that can lead to highly sub-optimal solutions. Our research focuses on inserting a human "in-the-loop" of the decision-making or problem solving process in order to generate solutions in a timely manner that improve upon those that are generated either scolely by a human or solely by a computer. We refer to this as Human-Machine Collaborative Decision-Making (HMCDM). The typical design process for developing human-machine approaches either starts with a human approach and augments it with decision-support or starts with an automated approach and augments it with operator input. We provide an alternative design process by presenting an 1HMCDM methodology that addresses collaboration from the outset of the design of the decision- making approach. We apply this design process to a complex military resource allocation and planning problem which selects, sequences, and schedules teams of unmanned aerial vehicles (UAVs) to perform sensing (Intelligence, Surveillance, and Reconnaissance - ISR) and strike activities against enemy targets. Specifically, we examined varying degrees of human-machine collaboration in the creation of variables in the solution of this problem. We also introduce an IIHMCDM method that combines traditional goal decomposition with a model formulation into an Iterative Composite Variable Approach for solving large-scale optimization problems.
 
(cont.) Finally, we show through experimentation the potential for improvement in the quality and speed of solutions that can be achieved through the use of an HMCDM approach.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2005.
 
Includes bibliographical references (p. 149-151).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32514
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.