Show simple item record

dc.contributor.advisorStephen L. Buchwald.en_US
dc.contributor.authorHennessy, Edward J. (Edward John), 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2006-03-29T18:52:10Z
dc.date.available2006-03-29T18:52:10Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32521
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractChapter 1. Copper-Catalyzed Arylation of Stabilized Carbanions A mild, general catalytic system for the synthesis of [alpha]-aryl malonates has been developed. Aryl iodides bearing a variety of functional groups can be effectively coupled to diethyl malonate in high yields using inexpensive and widely available reagents, making this a superior method to those previously described that employ copper reagents or catalysts. The functional group tolerance of the process developed makes it complementary to analogous palladium-catalyzed couplings. Importantly, a set of mild reaction conditions has been developed that minimize product decomposition, a problem that had not been addressed previously in the literature. In addition, the utilization of aryl bromides as coupling partners has been investigated, as well as the use of other classes of nucleophilic stabilized carbanions. Chapter 2. Synthesis of Oxindoles from a-Haloacetanilides via Palladium-Catalyzed C-H Functionalization We have discovered a palladium-catalyzed reaction that efficiently produces oxindoles from a-haloacetanilides through a net functionalization of an arene C-H bond. The high levels of regioselectivity observed in this cyclization obviate the need for highly functionalized aromatic substrates to effect desired ring closure. Moreover, the breadth of functional groups compatible with the reaction conditions is vastly greater than that of analogous Lewis acid-mediated processes. Extensive mechanistic work has been conducted, including kinetic isotope effect and linear free energy relationship studies.en_US
dc.description.abstract(cont.) A number of plausible pathways are consistent with our data and with previously published examples of palladium-catalyzed C-H functionalization processes. Chapter 3. Synthesis of DAPHAnalogs via Palladium-Catalyzed Amination DAPH (4,5-dianilinophthalimide) has previously been shown to reverse the formation of neurotoxic fibrils associated with Alzheimer's disease. We have developed a synthetic route to DAPH and structurally-related analogs that employs palladium- catalyzed amination as the key bond-forming step. The requisite substrates are easily obtained, and their coupling with substituted anilines proceeds in generally high yields. Thus, a variety of DAPH analogs can be quickly accessed in a modular fashion. In addition, the route described herein should also be amenable to the incorporation of other classes of nucleophiles into the molecular framework. The results of biological assays conducted thus far will serve as a guide for further lead optimizationen_US
dc.description.statementofresponsibilityby Edward J. Hennessyen_US
dc.format.extent174 leavesen_US
dc.format.extent7871819 bytes
dc.format.extent7882003 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleThe development and application of metal-catalyzed processes for organic synthesisen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc62775170en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record