MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ca2+ dependant synaptic modification

Author(s)
Huh, Dongsung, 1981-
Thumbnail
DownloadFull printable version (2.384Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
Advisor
Guosong Liu.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
It has been assumed that Ca2+ influx of different duration and amplitude would generate different level of potentiation. The conventional protocols of generating LTP have been 1. tetanic stimulation of presynaptic cell, 2. theta burst stimulation of presynaptic cell, and 3. correlated stimulation of pre- and post-synaptic cells. However, the effects of different Ca2+ influx can not be precisely dissected with the conventional protocols for the following defects: 1. the protocols do not discriminate between pre- and post-synaptic side plasticity, 2. the protocols observe synaptic plasticity between two cells which involve multiple synapses with heterogeneous properties, 3. precise control and measurement of the amount of Ca2+ influx are not possible in the protocols. In the present experiment, we perfused glutamate directly on to a single postsynaptic site, depolarized the postsynaptic intracellular potential to a controlled voltage for a controlled duration of time, thus controlling the opening of postsynaptic NMDA receptors and Ca2+ influx. By using this method, we found 1. that modification of synaptic strength has a bell-shaped dependency to the amount of Ca2+ influx, 2. that weak Ca2+ current through desensitized NMDA receptors sustained for a long period of time (160 ms) generates LTD, 3. evidence that phosphorylation of AMPAR leads to insertion of AMPAR.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2004.
 
Includes bibliographical references (p. 21-22).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/32741
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics., Brain and Cognitive Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.