MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical physics of dislocation nucleation by nanoindentation

Author(s)
Mason, Jeremy K. (Jeremy Kyle)
Thumbnail
DownloadFull printable version (3.965Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Christopher Schuh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Current understanding of the onset of plasticity during nanoindentation of crystalline materials involves homogenous dislocation nucleation in the crystal underneath the indenter. Through the use of cutting-edge nanoindentation techniques, this study examines the initiation of plastic deformation in single crystal oriented platinum samples. Variations in the temperature and loading rate during indentation reveal temporal and thermal dependencies, and support the stochastic and thermally-activated nature of the initial plastic event. These dependencies of dislocation nucleation are precisely quantified by developing analysis methods based on statistical thermodynamics, and are used to evaluate the probability of various atomistic mechanisms. The results of this procedure implicate a critical activation event occurring in a single atomic volume, with an activation enthalpy of a fraction of an electron volt. These findings strongly indicate that the initiation of plasticity begins with a heterogeneous dislocation nucleation event, in conflict with the current belief, and significantly advance understanding of the onset of plastic deformation during nanoindentation.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2005.
 
Page 82 blank.
 
Includes bibliographical references (page 79-81).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32914
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.