Show simple item record

dc.contributor.advisorMary C. Boyce.en_US
dc.contributor.authorSilberstein, Meredith Nen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2006-05-15T20:39:09Z
dc.date.available2006-05-15T20:39:09Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/32917
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.en_US
dc.descriptionIncludes bibliographical references (leaf 62).en_US
dc.description.abstractPolycarbonate is widely used as a transparent protective material because of its low density and excellent mechanical properties. However, when defects such as cracks or notches are introduced, it is subject to catastrophic brittle failure at relatively low loads. Notched Izod testing is a common qualitative measure of toughness of a material, measuring energy absorbed prior to failure under high triaxiality and high rate loading conditions. Much research has been done using Izod testing to compare the fracture energies of blends of Polycarbonate and rubbery materials; however the specific yielding and fracture mechanisms associated with each blend are rarely analyzed. This study presents detailed images, fracture energies, and time durations of the deformation and failure processes actively occurring during the Notched Izod testing of 3.23mm and 6.35mm thick Polycarbonate specimens, as well as of a quasi-static version of Notched Izod bending. The thin specimens were found to yield in a ductile manner followed by tearing across most of the ligament width, resulting in a final failure including a small plastically-deformed ligament hinging the two failure surfaces in both the Notched Izod impact and Quasi-Static tests.en_US
dc.description.abstract(cont). The thick specimens exhibited slight yielding followed by catastrophic failure, where the crack initiated ahead of the notch and then propagating back towards the notch root as well as across the remaining ligament.. In the thick Izod tests local pre-failure yielding was evident at the notch root resulting in extensive blunting of the notch. The fracture energies per unit thickness for the thin specimens were almost a full order of magnitude larger than those for the thick specimens. A finite element simulation for the Notched Izod Impact test was developed using the Arruda and Boyce(1988) constitutive model of polymers as modified by Mulliken and Boyce(2004) for high rate deformation. The 3.23mm Notched Izod impact test was successfully modeled from initial contact of the pendulum through initiation of failure and early tearing. The yielding patterns and failure occurred along the same lines as in the experiment where diagonal shear bands and lobes initiate plastic deformation from the notch tip and tearing progresses in a horizontal manner across the specimen width. An extensive shear yielded region is observed ahead of the propagating tear. The 6.35mm thick model shows the beginning of the formation pressure concentration which causes brittle fracture, but further refinement of the mesh needs to be performed for more accurate modeling.en_US
dc.description.statementofresponsibilityby Meredith N. Silberstein.en_US
dc.format.extent67 leavesen_US
dc.format.extent9989367 bytes
dc.format.extent9991618 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMechanical Engineering.en_US
dc.titleMechanics of Notched Izod impact testing of polycarbonateen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc62763620en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record