MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite element simulation and parameter optimization of a flexible tactile pressure sensor array

Author(s)
Lee, Shira M. (Shira Miriam)
Thumbnail
DownloadFull printable version (4.872Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Mandayam Srinivasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A finite element model was developed to optimize design of a flexible tactile sensor. The sensor consists of layers of thin-film copper and PDMS, and the model can be used to determine the effects on sensor sensitivity and durability of variations in material properties and geometry. The model was used to study the effect of variations in copper thickness. Four copper thicknesses, 0.3[mu]m, 0.5[mu]m, 3[mu]m, and 9[mu]m, were analyzed under a range of pressure loads. The thickness of the copper affected both the stress in the material and the displacement of the copper when a pressure load was applied to the sensor model. The stress in the sensor was highest for 3[mu]m copper, potentially causing decreased durability in this sensor. The separation between the copper strips beneath the pressure load was highest for 9[mu]m copper, so this sensor may have lower accuracy for small loads. Thin copper strips are challenging to manufacture, so the largest but most accurate and durable copper strip thickness, 0.5[mu]m, is recommended from this analysis.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32948
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.