Show simple item record

dc.contributor.advisorMichael J. Hopkins.en_US
dc.contributor.authorHenriques, André Gilen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2006-06-19T17:39:39Z
dc.date.available2006-06-19T17:39:39Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/33091
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 127-130).en_US
dc.description.abstractIn this thesis, I introduce a new definition for orbispaces based a notion of stratified fibration and prove it's equivalence with other existing definitions. I study the notion of orbispace structures on a given stratified space. I then set up two parallel theories of stratified fibrations, one for topological spaces, and one for simplicial sets. Modulo a technical comparison between the two theories, I construct a classifying space for orbispace structures. Using a conjectural obstruction theory, I then prove that every compact orbispace is equivalent to the quotient of a compact space by the action of a compact Lie group.en_US
dc.description.statementofresponsibilityby André Gil Henriques.en_US
dc.format.extent130 p.en_US
dc.format.extent6046340 bytes
dc.format.extent6052601 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMathematics.en_US
dc.titleOrbispacesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc62173291en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record