MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localization and sensing applications in the Pushpin Computer Network

Author(s)
Broxton, Michael Joseph
Thumbnail
DownloadFull printable version (11.13Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Joseph Paradiso.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The utility and purpose of a node in a wireless sensor network is intimately tied to the physical space in which it is distributed. As such, it is advantageous under most circumstances for a sensor node to know its position. In this work, we present two systems for localizing a network of roughly 60 sensor nodes distributed over an area of 1-m2. One is based on a linear lateration technique, while the second approach utilizes non-linear optimization techniques, namely spectral graph drawing and mesh relaxation. In both cases, localization is accomplished by generating distance constraints based on ultrasound time-of-flight measurements to distinct, global sensor stimuli. These distance constraints alone are sufficient to achieve localization; no a priori knowledge of sensor node coordinates or the coordinates of the global sensor events are required. Using this technique, we have achieved a localization error of 2.30-cm and an error standard deviation of 2.36-cm.
Description
Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 117-124).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33112
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.