MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel sorting and Star-P data movement and tree flattening

Author(s)
Cheng David R. (David Rolin)
Thumbnail
DownloadFull printable version (3.753Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan Edelman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis studies three problems in the field of parallel computing. The first result provides a deterministic parallel sorting algorithm that empirically shows an improvement over two sample sort algorithms. When using a comparison sort, this algorithm is 1-optimal in both computation and communication. The second study develops some extensions to the Star-P system [7, 6] that allows it to solve more real problems. The timings provided indicate the scalability of the implementations on some systems. The third problem concerns automatic parallelization. By representing a computation as a binary tree, which we assume is given, it can be shown that the height corresponds to the parallel execution time, given enough processors. The main result of the chapter is an algorithm that uses tree rotations to reduce the height of an arbitrary binary tree to become logarithmic in the number of its inputs. This method can solve more general problems as the definition of tree rotation is slightly altered; examples are given that derive the parallel prefix algorithm, and give a speedup in the dynamic programming approach to the computation of Fibonacci numbers.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 81-84).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33117
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.