dc.contributor.advisor | Deb Roy. | en_US |
dc.contributor.author | Juster, Joshua | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2006-06-19T17:44:15Z | |
dc.date.available | 2006-06-19T17:44:15Z | |
dc.date.copyright | 2004 | en_US |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/33133 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004. | en_US |
dc.description | Includes bibliographical references (leaf 40). | en_US |
dc.description.abstract | We describe a home lighting robot that uses directional spotlights to create complex lighting scenes. The robot senses its visual environment using a panoramic camera and attempts to maintain its target goal state by adjusting the positions and intensities of its lights. Users can communicate desired changes in the lighting environment through speech and gesture (e.g., "Make it brighter over there"). Information obtained from these two modalities are combined to form a goal, a desired change in the lighting of the scene. This goal is then incorporated into the system's target goal state. When the target goal state and the world are out of alignment, the system formulates a sensorimotor plan that acts on the world to return the system to homeostasis. | en_US |
dc.description.statementofresponsibility | by Joshua Juster. | en_US |
dc.format.extent | 44 leaves | en_US |
dc.format.extent | 2012085 bytes | |
dc.format.extent | 2012307 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Speech and gesture understanding in a homeostatic control framework for a robotic chandelier | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 62241770 | en_US |