dc.contributor.advisor | Franco N.C. Wong. | en_US |
dc.contributor.author | Gorelik, Pavel Vladimir, 1980- | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2006-07-13T15:13:46Z | |
dc.date.available | 2006-07-13T15:13:46Z | |
dc.date.copyright | 2005 | en_US |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/33302 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005. | en_US |
dc.description | Includes bibliographical references (p. 91-94). | en_US |
dc.description.abstract | A. method used to obtain frequencies in precise ratios of 2/3 and 1/3 of the pump is described as a possible way to extend the usable range of octave-spanning optical frequency combs for frequency metrology applications. The divider is based on a self- phase locked optical parametric oscillation in a doubly resonant semi-monolithic optical cavity containing a dual-grating periodically poled lithium niobate. The design, implementation and evaluation of such a frequency divider are described. Preliminary experimental data from the self-phase locked optical frequency divider is presented. We have obtained sub-100 mW threshold for the optical parametric oscillator with stable operation over 1 s without servo locking the cavity length. Preliminary results suggest that self-phase locking has been observed. | en_US |
dc.description.statementofresponsibility | by Pavel Vladimir Gorelik. | en_US |
dc.format.extent | 94 p. | en_US |
dc.format.extent | 5217027 bytes | |
dc.format.extent | 5221821 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Optical frequency division by 3 employing self-phase-locking in periodically poled lithium niobate | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 62279506 | en_US |