MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lower bounds for embedding the Earth Mover Distance metric into normed spaces

Author(s)
Samuel, Javed K. K
Thumbnail
DownloadFull printable version (1.806Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Piotr Indyk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a lower bounds for embedding the Earth Mover Distance (EMID) metric into normed spaces. The EMID is a metric over two distributions where one is a mass of earth spread out in space and the other is a collection of holes in that same space. The EMD between these two distributions is defined as the least amount of work needed to fill the holes with earth. The EMD metric is used in a number of applications, for example in similarity searching and for image retrieval. We present a simple construction of point sets in the ENID metric space over two dimensions that cannot be embedded from the ED metric exactly into normed spaces, namely l1 and the square of l2. An embedding is a mapping f : X --> V with X a set of points in a metric space and ' Va set of points in some normed vector space. When the Manhattan distance is used as the underlying metric for the EMD, it can be shown that this example is isometric to K2,4 which has distortion equal to 1.25 when it is embedded into I and( 1.1180 when embedded into the square of 12. Other constructions of points sets in the EMID metric space over three and higher dimensisions are also discussed..
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 71-73).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33346
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.