dc.contributor.advisor | Ronald L. Rivest and Chris Peikert. | en_US |
dc.contributor.author | Wilson, David A. (David Alexander) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2006-07-13T15:20:18Z | |
dc.date.available | 2006-07-13T15:20:18Z | |
dc.date.copyright | 2005 | en_US |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/33389 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005. | en_US |
dc.description | Includes bibliographical references (p. 59-60). | en_US |
dc.description.abstract | This thesis introduces models for error-prone communication channels and functionalities for error-free communication in the Universal Composability framework. Realizing these functionalities enables protocols to make use of cryptographic error-correcting schemes which are more powerful than classical codes. First, we define new ideal functionalities TrCLOSE and FCWT to model error-prone communication channels. Then, we define four different ideal functionalities for error-free message transmission, each providing successively stronger message delivery guarantees. Using ideal message certification, we give protocols which realize three of these functionalities for error rates up to 1/2. Finally, we prove that the fourth functionality, which models error-free data storage, is not realizable if the error rate exceeds 1/4. | en_US |
dc.description.statementofresponsibility | by David A. Wilson. | en_US |
dc.format.extent | 60 p. | en_US |
dc.format.extent | 2390383 bytes | |
dc.format.extent | 2392788 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Error-free message transmission in the universal composability framework | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 62560147 | en_US |