MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A self-assembling peptide scaffold functionalized for use with neural stem cells

Author(s)
Hucknall, Angus M. (Angus Mitchell)
Thumbnail
DownloadFull printable version (1.602Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Shuguang Zhang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The performance of a biological scaffold formed by the self-assembling peptide RADA16 is comparable to the most commonly used synthetic materials employed in the culture of neural stem cells. Furthermore, improvements in the performance of RADA16 have recently been made by appending the self-assembling peptide sequence with various functional motifs from naturally occurring proteins. The focus of this work is to further analyze the performance of these functionalized self-assembling peptide scaffolds when used for the culture of neural stem cells, and to characterize these newly developed materials for comparison with RADA16. The effect of the functional motifs on the structure of the peptide scaffold was evaluated with circular dichroism and scanning electron microscopy, and the mechanical properties of the peptide scaffolds were examined through theological analysis. The functionalized peptides were found to have lower percentages of beta-sheet structure as well as reduced storage moduli in comparison with RADA16. SEM images confirmed the ability of the functionalized peptides to form three-dimensional nanofiber scaffolds capable of encompassing, neural stem cells. Three-dimensional cell culture techniques were used to evaluate the ability of the functionalized peptide scaffolds to promote neural stem cell proliferation, and a scaffold formed by the combination of different functionalized peptides was found to increase the proliferation of neural stem cells in comparison to non-functionalized RADA 16.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2005.
 
Includes bibliographical references (leaves 33-35).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33396
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.