MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental hydrodynamics of spherical projectiles impacting on a free surface using high speed imaging techniques

Author(s)
Laverty, Stephen Michael
Thumbnail
DownloadFull printable version (11.92Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Ocean Engineering.
Advisor
Alexandra H. Techet.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis looks at the hydrodynamics of spherical projectiles impacting the free surface using a unique experimental WebLab facility. Experiments were performed to determine the force impact coefficients of spheres and then compare obtained results to theories developed by Von-Karman [ 19] and Wagner [20]. It was found that experimental results matched a generalized Wagner approach developed by Touvia Miloh [12]. A critical impact speed for splash formation was determined before which no splash cavity would form. The cone angle formed behind an impacting object was also studied. The cone angle was found to be a function of depth and impact speed over the range of impact velocities tested. Steel spheres ranging in diameter from 0.64 cm (1/4 in) to 5.08 cm (2 in) were used at impact speeds from 0 to 6.9 m/s. Standard billiard balls of diameter 5.72 cm (2.25 in) were also used in this study. As part of this project, the WebLab facility was constructed. iMarine WebLab is an interactive teaching tool used to educate students in various aspects of marine hydrodynamics and experimental fluid mechanics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.
 
Includes bibliographical references (leaves 78-80).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33566
Department
Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Ocean Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.