MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deterministic and stochastic modeling of the water entry and descent of three-dimensional cylindrical bodies

Author(s)
Mann, Jennifer L. (Jennifer Lynn)
Thumbnail
DownloadFull printable version (7.995Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Ocean Engineering.
Advisor
Dick K.P. Yue.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An effective physics-based model has been developed that is capable of reliably predicting the motion of a three-dimensional mine-shaped object impacting the water surface from air and subsequently dropping through the water toward the sea bottom. This deterministic model, MINE6D, accounts for six-degree-of-freedom motions of the body. MINE6D allows for physics-based modeling of hydrodynamic effects due to water impact, viscous drag associated with flow separation and vortex shedding, air entrainment, and realistic flow environments. Unlike existing tools that are limited to plane motions only, MINE6D captures the myriad of complex three-dimensional motions of cylindrical mines observed in field and laboratory experiments. In particular, accounting for the three-dimensional viscous drag and air entrainment cavity produces an accurate prediction of the velocity, trajectory, and orientation of mines freely dropping in the water. The model development and effects on body motion are presented for both viscous drag and air entrainment cavities.
 
(cont.) Monte Carlo simulation using MINE6D is then used to obtain statistical characterization of mine motions in practical environments. These statistical results are not only the essential input for stochastic bottom impact and burial predictions of mines but also important for the design of mines.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.
 
Includes bibliographical references (p. 67-70).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33568
Department
Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Ocean Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.