Show simple item record

dc.contributor.advisorMoungi G. Bawendi.en_US
dc.contributor.authorFisher, Brent Ren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2006-07-31T15:20:10Z
dc.date.available2006-07-31T15:20:10Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/33649
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractA wide variety of spectroscopic studies of CdSe nanocrystals (NCs) are presented in this thesis, all studying some aspect of the temporal evolution of NC fluorescence tinder different conditions. In particular the methods of single molecule spectroscopy are used in many experiments allowing the behavior of individual NCs to be resolved from the blurring effect of averaging over the ensemble. Studies of the excited state lifetime of band edge fluorescence from single NCs reveal multiexponential relaxation dynamics that stem from fluctuations of non-radiative decay rates for the band edge exciton. Analysis of these fluctuations allows us to extract single exponential dynamics by sampling only "maximum-intensity" photons, and we find that this single exponential decay is remarkably uniform across a wide variety of NC samples and sizes. We also investigate luminescence from multiexciton (e.g. biexciton and triexciton) states of nanocrystals at both the ensemble and single NC level.en_US
dc.description.abstract(cont.) Energy splittings, size and temperature dependencies, quantum yields and lifetimes of multiexciton states are measured and discussed. We show for the first time direct resolution of biexciton emission from single exciton emission using two different techniques, fluorescence line narrowing and single NC spectroscopy. We also study the non-classical light emission properties of single NCs and show how multiexciton emission leads to radiative quantum cascades of single photons in the emission of a single NC. Time resolved studies of fluorescence from NCs in solution environments conclude the thesis. The relationship between lifetime and quantum yield for non-homogeneous ensembles like NCs is studied in chapter 8. We show that a sub-population of non-luminescent nanocrystals can reduce the quantum yield of an ensemble of NCs even though the measured lifetime stays constant. A study of NCs in solution fluorescence correlation spectroscopy (FCS) is presented last. We find that FCS is a capable tool for distinguishing small differences in hydrodynamic radius of NCs in solution. We also find that blinking of NCs may have a significant impact on these FCS measurements.en_US
dc.description.abstract(cont.) An appendix to this thesis presents a general summary the lifetime of various samples CdSe and CdTe NCs.en_US
dc.description.statementofresponsibilityby Brent R. Fisher.en_US
dc.format.extent276 p.en_US
dc.format.extent12664025 bytes
dc.format.extent12677397 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleTime resolved fluorescence of CdSe nanocrystals using single molecule spectroscopyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc64395489en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record