MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traveling salesman path problems

Author(s)
Lam, Fumei
Thumbnail
DownloadFull printable version (8.689Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Michael X. Goemans.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the Traveling Salesman Path Problem, we are given a set of cities, traveling costs between city pairs and fixed source and destination cities. The objective is to find a minimum cost path from the source to destination visiting all cities exactly once. The problem is a generalization of the Traveling Salesman Problem with many important applications. In this thesis, we study polyhedral and combinatorial properties of a variant we call the Traveling Salesman Walk Problem, in which the minimum cost walk from the source to destination visits all cities at least once. Using the approach of linear programming, we study properties of the polyhedron corresponding to a linear programming relaxation of the traveling salesman walk problem. Our results relate the structure of the underlying graph of the problem instance with polyhedral properties of the corresponding fractional walk polyhedron. We first characterize traveling salesman walk perfect graphs, graphs for which the convex hull of incidence vectors of traveling salesman walks can be described by linear inequalities. We show these graphs have a description by way of forbidden minors and also characterize them constructively.
 
(cont.) We extend these results to relate the underlying graph structure to the integrality gap of the corresponding fractional walk polyhedron. We present several graph operations which preserve integrality gap; these operations allow us to find the integrality gap of graphs built from smaller bricks, whose integrality gaps can be found by computational or other methods.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.
 
Includes bibliographical references (p. 153-155).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33668
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.