MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemical vapor deposition of conjugated polymeric thin films for photonic and electronic applications

Author(s)
Lock, John P
Thumbnail
DownloadFull printable version (5.343Mb)
Alternative title
CVD conjugated polymeric thin films for photonic and electronic applications
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Karen K. Gleason.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) Conjugated polymers have delocalized electrons along the backbone, facilitating electrical conductivity. As thin films, they are integral to organic semiconductor devices emerging in the marketplace, such as flexible displays and plastic solar cells, as well as next-generation microphotonic chips. A major processing challenge is that these materials are relatively insoluble. Chemical vapor deposition (CVD) is presented as a synthesis technique for conjugated polymers as an alternative to electrochemical and liquid dispersion methods. CVD will continue to be an essential component of the materials toolset for manufacturers of semiconductor devices. Polysilanes, with a backbone consisting of silicon atoms instead of carbon, have delocalized electrons due to the presence of d-orbitals. Plasma-enhanced CVD (PECVD) of polysilane films was achieved, but they did not exhibit electrical conductivity. Branching resulting from the energetic plasma process quenches the conjugation. However, photo oxidation was used to convert Si-Si bonds into Si-O-Si, reducing the refractive index up to 5%. This led to the direct patterning of tunable waveguides in PECVD hexamethyldisilane (6M2S).
 
(cont.) Other essential devices for microphotonics are microring resonators used for filtering an individual wavelength from "multicolor" light. Photo oxidation of 6M2S, deposited as the cladding material on ring resonators, allows one to shift the resonant wavelength an order of magnitude more than conventional thermal trimming techniques. Microphotonics will ultimately increase computing speeds with chips that operate using light instead of electricity. A CVD technique was also developed for poly-3,4-ethylenedioxythiophene or PEDOT. Among conducting polymers, PEDOT has superior conductivity (up to 300 S/cm) and excellent stability. CVD PEDOT has a conductivity of about 5 S/cm, while 1 S/cm is the figure-of-merit for a good conducting polymer film. As a charge-injecting layer in organic light-emitting diodes (OLEDs), PEDOT increases the overall power efficiency 30-50%. CVD can further enhance this efficiency gain in organic devices by more conformally coating PEDOT on high-area surfaces. CVD PEDOT films also exhibit reversible electrochromic behavior changing color from their as- deposited sky blue color to a darker blue when they are reduced with an applied voltage. A 50-nm film had a contrast of 16.5% with a switching speed of 27 ms.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2005.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33714
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.