MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polonium extraction techniques for a lead-bismuth cooled fast reactor

Author(s)
Larson, Christopher L. (Christopher Lee), 1978-
Thumbnail
DownloadFull printable version (18.40Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Engineering.
Advisor
Kenneth R. Czerwinski.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The construction of a next generation fast nuclear reactor using liquid lead-bismuth as a coolant demands the design of applied technology to remove 210Po from the neutron activated lead-bismuth eutectic. Experiments were performed to determine the kinetics of polonium hydride and lead-polonide released from molten lead-bismuth to determine the rate response of gaseous polonium chemical species in contact with various argon and hydrogen gas streams. It was determined that the rate release of polonium hydride is slightly higher at lower temperatures. The kinetic response is also faster with increased hydrogen content, as evident by the determined equilibrium constant. In addition, experiments involving the adsorption of gaseous polonium species on metallic praseodymium were undertaken. Formation of an oxidation layer and physical deterioration of the praseodymium inhibited proper sample analysis. The extraction techniques of rare-earth filtering and polonium hydride stripping and their relative figures of merit were discussed. Of the two techniques, a small-scale design adopting polonium hydride stripping was explored to address basic issues of design, fabrication, operation, and maintenance of an online polonium extraction system. Pending results of further investigation on alkaline extraction and electro-deposition experiments a small-scale design may be pursued.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2002.
 
Includes bibliographical references (p. 92-94).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/33825
Department
Massachusetts Institute of Technology. Department of Nuclear Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.