MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and fabrication of an electrically-activated photonic crystal nanocavity laser

Author(s)
Mattson, Eric (Eric Michael)
Thumbnail
DownloadFull printable version (12.42Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Leslie A. Kolodziejski.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the future, optical networks may see an expanded role not only in telecommunications, but also in computers and other common electronic devices. These optical networks will require small, on-chip light sources. By using the photonic crystal's ability to strongly confine light, photonic crystal lasers can be built very small and very efficient, making them ideal for photonic integrated circuits. This thesis describes the design and fabrication of an electrically-activated photonic crystal nanocavity laser using an active layer with quantum dots. Hydrogen silsesquioxane (HSQ) was studied as an electron-beam lithography resist, and reactive ion etching of AlGaAs and InGaAlP was investigated. The laser described herein is very small, only - 5 gm in length and width. The design is also very flexible. By simply changing the active material and the size and spacing of the holes which create the one-dimensional photonic crystals, the emission wavelength can be easily varied. The laser is anticipated to be more efficient than the current technology from both the energy and chip design standpoints, and should represent a major improvement in on-chip light sources.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 70-71).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33849
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.