Show simple item record

dc.contributor.advisorHari Balakrishnan.en_US
dc.contributor.authorPriyantha, Nissanka Bodhi, 1968-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-08-25T18:57:13Z
dc.date.available2006-08-25T18:57:13Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/33924
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 191-199).en_US
dc.description.abstractIndoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor networking etc. Typical indoor applications require better accuracy than what current outdoor location systems provide. Outdoor location technologies such as GPS have poor indoor performance because of the harsh nature of indoor environments. Further, typical indoor applications require different types of location information such as physical space, position and orientation. This dissertation describes the design and implementation of the Cricket indoor location system that provides accurate location in the form of user space, position and orientation to mobile and sensor network applications. Cricket consists of location beacons that are attached to the ceiling of a building, and receivers, called listeners, attached to devices that need location. Each beacon periodically transmits its location information in an RF message. At the same time, the beacon also transmits an ultrasonic pulse. The listeners listen to beacon transmissions and measure distances to nearby beacons, and use these distances to compute their own locations.en_US
dc.description.abstract(cont.) This active-beacon passive-listener architecture is scalable with respect to the number of users, and enables applications that preserve user privacy. This dissertation describes how Cricket achieves accurate distance measurements between beacons and listeners. Once the beacons are deployed, the MAT and AFL algorithms, described in this dissertation, use measurements taken at a mobile listener to configure the beacons with a coordinate assignment that reflects the beacon layout. This dissertation presents beacon interference avoidance and detection algorithms, as well as outlier rejection algorithms to prevent and filter out outlier distance estimates caused by uncoordinated beacon transmissions. The Cricket listeners can measure distances with an accuracy of 5 cm. The listeners can detect boundaries with an accuracy of 1 cm. Cricket has a position estimation accuracy of 10 cm and an orientation accuracy of 3 degrees.en_US
dc.description.statementofresponsibilityby Nissanka Bodhi Priyantha.en_US
dc.format.extent199 p.en_US
dc.format.extent12205565 bytes
dc.format.extent12213940 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleThe Cricket indoor location systemen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc67296044en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record