MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering light using large area photonic crystal devices

Author(s)
Tandon, Sheila (Sheila N.), 1978-
Thumbnail
DownloadFull printable version (37.58Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Leslie A. Kolodziejski.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/33931 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Photonic crystals are fabricated structures composed of a periodic arrangement of materials with differing indices of refraction. This research has focused on the realization of two distinct photonic crystal structures in which large area has played a key role: 1) large area broadband saturable Bragg reflectors, and 2) large area 2D photonic crystal devices. Saturable Bragg reflectors (SBRs) can be used to self-start ultra-short pulse generation in a variety of solid state and fiber lasers. To form shorter pulses, SBRs with broadband reflectivity and large area (100's of [mu]m) are required. This thesis describes the design and fabrication of large area broadband saturable Bragg reflectors through the monolithic integration of semiconductor saturable absorbers with large area broadband Bragg mirrors. One of the key elements for realizing this device is the development of a wet oxidation process to create buried low-index ... layers over large areas. Large area 2D photonic crystals enable new methods for routing and guiding light with applications in compact integrated optical circuits. This research has explored the design and fabrication of two large area (centimeter-scale) 2D photonic crystal devices: a superprism and a super- collimator.
 
(cont.) A superprism is a photonic crystal device in which the direction of light propagation is extremely sensitive to the wavelength and angle of incidence. A super- collimator is a device in which light is guided by the dispersion properties of a photonic crystal slab without boundaries which define the light's path. Design, fabrication, and testing are discussed for both 2D photonic crystal devices.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://dspace.mit.edu/handle/1721.1/33931
http://hdl.handle.net/1721.1/33931
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.