MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An energy efficient RF transceiver for wireless microsensor networks

Author(s)
Daly, Denis Clarke
Thumbnail
DownloadFull printable version (904.0Kb)
Alternative title
Energy efficient radio-frequency transceiver for wireless microsensor networks
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/34111 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A wireless microsensor network consists of a group of sensor nodes that are deployed remotely and used to relay sensing data to the end-user. Due to their remote deployment, large scale wireless sensor networks require a low-power, energy efficient transceiver that can operate for years on a single battery. Existing wireless transceivers designed for low-power wireless standards like IEEE 802.15.4 have difficulty meeting such stringent energy requirements. Thus, a custom on-off keying wireless transceiver for sensor networks has been designed in a 0.18-[micro]m CMOS process. Power savings are achieved by using an envelope detection based architecture that leverages SAW components and through advanced circuit techniques. The transceiver is power-aware, able to scale power consumption in response to operating conditions. Circuit optimizations are made in both high frequency and baseband circuits to minimize the number of off-chip components and to achieve optimal energy efficiency. A thorough comparison of radio-frequency tuned and untuned gain stages shows that untuned gain can offer energy efficiency advantages in many situations. The transceiver operates in the 900 MHz ISM band at a data rate of 1 Mbps. The receiver's sensitivity is scalable from -37 dBm to -71 dBm with power consumption ranging from 500 [micro]W to 2.4 mW.
 
(cont.) These power levels correspond to an energy per bit ratio of 0.5 to 2.4 nanojoules per bit, more than ten times smaller than the ratio of typical wireless receivers. The transmitter supports output power levels from -10 dBm to -1 dBm and has a maximum power efficiency of 11%.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 81-86).
 
Date issued
2005
URI
http://dspace.mit.edu/handle/1721.1/34111
http://hdl.handle.net/1721.1/34111
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.