MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximation algorithms for low-distortion embeddings into low-dimensional spaces

Author(s)
Sidiropoulos, Anastasios
Thumbnail
DownloadFull printable version (1.265Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Piotr Indyk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present several approximation algorithms for the problem of embedding metric spaces into a line, and into the two-dimensional plane. We give an O([square root] n)-approximation algorithm for the problem of finding a line embedding of a metric induced by a given unweighted graph, that minimizes the (standard) multiplicative distortion. For the same problem, we give an exact algorithm, with running-time exponential in the distortion. We complement these results by showing that the problem is NP-hard to [alpha]-approximate, for some constant [alpha] > 1. For the two-dimensional case, we show a O([square root] n) upper bound for the distortion required to embed an n-point subset of the two-dimensional sphere, into the plane. We prove that this bound is asymptotically tight, by exhibiting n-point subsets such that any embedding into the plane has distortion [omega]([square root] n). These techniques yield a O(1)-approximation algorithm for the problem of embedding an n-point subset of the sphere into the plane.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 33-35).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/34126
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.