MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DNA alkylation repair deficient mice are susceptible to chemically induced Inflammatory Bowel Disease

Author(s)
Green, Stephanie Lauren
Thumbnail
DownloadFull printable version (4.761Mb)
Alternative title
Deoxyribonucleic acid alkylation repair deficient mice are susceptible to chemically induced IBD
Other Contributors
Massachusetts Institute of Technology. Biological Engineering Division.
Advisor
Leona D. Samson.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The two most common forms of inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's Disease (CD), which affect more than 1 million Americans. Recently the incidence of IBD has been rising in Japan, Europe and North America.' Colorectal cancer is a very serious complication of IBD, and a patient's risk increases with increasing extent and duration of disease.2 There is no cure for CD, and the only cure for UC is removal of the entire colon and rectum. It is thought that cancer risk is based on chronic inflammation of the gastrointestinal mucosa. There have been many studies, which have supported this idea and have made progress toward understanding the link between chronic inflammation and cancer. In both UC and CD, it is known that there are increased levels of EA, cG, and eC, which are potentially miscoding lesions, in the DNA of affected tissues.3 Also, 3-methyladenine DNA glycosylase (Aag in mice), an initiator of the Base Excision Repair pathway, shows adaptively increasing activity in response to increased inflammation in UC colon epithelium.4 This thesis demonstrates the importance of Aag in protecting against the effects of chronic inflammation.
 
(cont.) It was found that Aag deficient mice, treated with 5 cycles of dextran sulfate sodium (DSS) to induce chronic inflammation, showed significant signs of increased disease including decreased colon length, increased spleen weight, and increase in epithelial defects. Also, when treated with a tumor initiator, azoxymethane, prior to DSS exposure, Aag deficient mice show a 2.95 fold (p<0.0001) increase in tumor multiplicity compared to wild type treated animals, as well as decreased colon length, increased spleen weight, increased dysplasia/neoplasia, and increased area affected by dysplasia/neoplasia. If UC patients had a deficiency in 3-methyladenine-DNA-glycosylase activity, they would likely be more susceptible to mutations and cancer because of their inability to repair DNA damage caused by inflammatory cytokines and reactive oxygen and nitrogen species. In future studies, it would be beneficial to determine if transgenic Aag over-expresser mice show protection against the damage induced by chronic inflammation. This would make intestinal gene therapy a possible approach to finding the first cure for IBD and inflammation associated colorectal cancer.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Biological Engineering Division, 2006.
 
Includes bibliographical references (leaves 92-93).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/34157
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering Division.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.